solar energy

Resilient Energy Collective Provides Off-Grid Power to Bushfire Effected Areas

Goongerah.jpg

Photo: https://www.resilientenergy.com.au

Australian billionaire Mike Cannon-Brookes has co-founded the Resilient Energy Collective, an initiative designed to bring solar power and battery storage solutions to communities that have had energy supplies disabled through the effects of bushfires and storms. 

Following the recent bushfire crisis in Australia which has destroyed lives, wildlife, communities and important infrastructure there are many areas that are still without normal services such as electricity. The Resilient Energy Collective has teamed in with 5B, an innovator designing portable and prefabricated solar arrays and Telsa, with their reliable battery storage, to provide stand-alone power systems to communities and essential services. 

It is a shift away from the need to rely on the pole and wire approach for power and electricity that can provide more stability to remote locations and communities which are vulnerable to the changing effects of the climate. The systems themselves can be deployed within a day and will ensure clean and reliable energy that not only establishes and reconnects services for communities but will also contribute greatly to a more sustainable future. 

“In the future, we see a world in which many remote communities operate on solar power, off-the-grid. It will be more stable, more resilient and less prone to damage,” Cannon-Brookes says.

“This is a perfect solution to a massive problem. It will restore power faster. It’s renewable, reliable and clean.”

PRINTING THE NEXT GENERATION OF SOLAR CELLS 

By Jonathan Porter, University of Melbourne

In 2004, Professor Andrew Holmes, now in the University of Melbourne’s School of Chemistry, decided to up stakes in Cambridge and head home to Australia.

The pioneering organic chemistry legend and recipient of the Royal Medal had been looking into the qualities of organic light emitting diodes and decided to consider the question from the other direction: if you put electricity in and get light out, why can’t you do the reverse - shine on light and harvest electricity?

Australia was a place with plenty of sunlight and a tradition of working in solar technology and it seemed the obvious choice to set up shop.

At the same time, Imperial College post-doctoral chemist David Jones, also now in the University of Melbourne’s School of Chemistry, wanted to head home as well. Dr Jones was then the leader of a team working in the exotic field of catalyst discovery for petroleum giant BP but his mother was ill.

“I had been away from my family for too long,” Dr Jones says now. “It was time to go home and my boss said: ‘Have you heard Andrew is heading to Australia and is looking to put a team together?’”

The flexible cells may replace the rigid variety pictured above.

Thus began a partnership between physics and chemistry, industry and academia, pure science and applied research, which has the potential to provide cheap, almost limitless energy – through printed solar cells.

Professor Holmes and Dr Jones, who also both work in the University of Melbourne’s Bio21 Institute, have since contributed to two major developments in solar technology. These include the discovery of new kinds of light-harvesting crystals and a technique to print the largest plastic solar cells in Australia on A3-sized sheets.

The revolutionary light-harvesting liquid crystals can be printed cheaply on plastic, creating flexible, moldable, semi-transparent solar cells that can be used pretty much anywhere.

These new flexible solar cells could soon cover roofs, windows, clothing, phones and cars, capturing the power of the sun wherever it falls, providing an advantage over silicon-based solar panels which are effective but limited by their size, rigidity and cost.

The work was done as part of a collaboration between research (with Monash University and CSIRO Manufacturing Flagship) and industry partners called the Victorian Organic Solar Cell Consortium (VICOSC).

While earlier 10 sq cm cells produce energy around two per cent efficiency, too meagre at this stage to be commercially viable, the team has taken the performance of organic solar cells from around 8 per cent efficiency to 9.3 per cent.

This is finally approaching the international benchmark of 10 per cent – and they have achieved up to nearly 18 per cent efficiency in the laboratory with hybrid cells.

The final product could be produced for less than $10 a metre.

Dr David Jones (left), Professor Andrew Holmes and the CSIRO’s Dr Scott Watkins with a new plastic solar cell.

Professor Holmes and Dr Jones attribute their success with these A3-sized organic photovoltaic cells to collaboration between the two faculties and partners including Monash and CSIRO.

“There was an open, swinging doors policy between all labs,” Professor Holmes says.

Dr Jones agrees: “The CSIRO had the right equipment and printing equipment bought by the VICOSC was located at Clayton, so some of our people worked in their labs. We had open access to their labs. There was no distinction.”

Bi-weekly meetings of team leaders also helped.

“Key people knew what was going on in all aspects of the project,” Dr Jones says. 

There were a lot of people working on disparate parts of the problem and to have them coming together was absolutely essential.

The collaboration went deeper. Industry partner Bluescope wanted to incorporate printed solar panels on their Colorbond roofs. Innovia Security (the makers of the Australia’s plastic notes) had expertise in printing on plastic, and Innovia Films, (another arm of the firm) were manufacturing the polymer.

Printed solar cells may provide an environmentally-friendly solution to our energy needs.

The breakthrough in improved efficiencies came with the development of “nematic” liquid crystals that have improved charge transport, which can now lead to vastly improved organic solar cell performance.

The nematic liquid crystal solar cells are also easier to manufacture.

Professor Holmes sums up the benefits of the collaborative process: “The most important issue in science today is that you must be competent in your core skills and across boundaries.

If you are going to do something disruptive you need to build on breakthroughs. The opportunities need to be there and you need to take them.

“You have to be able to work at the interface of two or three disciplines. You need to be working at the coal face of two or three overlapping areas.”

Professor Holmes is no stranger to collaborative breakthroughs. In the late 1970s he recognised the importance of a compound derived from Hawaiian kelp that one of his PhD students showed him.

The organic LEDs that were eventually developed out of that episode are available to run the screen you are reading this article on.

So what does the future hold in this case? Professor Holmes says the next main project is collaboration with partners in the US.

“We need the next push to be from either an industrial investor or a venture capitalist, so we can push the boat out into manufacturing,’’ he says, noting that venture capital in Australia has tended to be very conservative.

Moving to manufacturing here will be a smart move, not just to generate energy but to create jobs in the future.

The risk is that the team, which was brought together at such cost and effort, will drift apart if momentum is not kept up.

“If you let good people go, they will get snapped up abroad in this very fast-moving field.

“We need that next level of push to see it through until it starts to make money. That is what we hope will happen.

“I am hoping the sentiments expressed by the new resident of the Lodge (new Australian Prime Minister Malcolm Turnbull) will fire up the community’s enthusiasm to help see this through.”

 

**Original Article**

https://pursuit.unimelb.edu.au/articles/printing-the-next-generation-of-solar-cells

Battery Storage Basics

The type of battery storage technology which is now being used to store solar energy is a fairly new development, the last couple of years in fact. The batteries use a chemical process which allows for the storage of electrical energy which can then be used at a later time. 

The main reason for considering a battery system for your premise is that despite the abundance of the Sun’s irradiance, photovoltaic solar panels rely on direct sunlight in order to produce electricity. So when there is little or no sunlight there will be a decrease in energy production and the consumer would therefore have to revert to the grid as an energy provider.

Battery storage fosters self-sufficiency when it comes to energy production and consumption, its very easy to mitigate the risks of rising energy costs, avoid power outages and decrease the reliance on environmentally harmful fossil based fuels. 

Specific benefits for investing in battery technology will vary depending on the system size and design which will be taking into account the specific needs and requirement of each project but there is a lot to gain by investing into the great energy storage technologies available today.

Victoria's Renewable Energy Action Plan

This plan outlines decisive action that the Victorian Government is taking to encourage investment in our energy sector and to ensure Victorians continue to benefit from a renewable, affordable and reliable energy system into the future.

The Renewable Energy Action Plan invests $146 million across three focus areas:

    1    Supporting sector growth

    2    Empowering communities and consumers

    3    Modernising our energy system

Key initiatives include:

    •    $48.1 million for renewable energy certificate purchasing, including powering Victoria’s tram fleet. This has also brought forward the development of two new wind farms totalling 100MW and a new 75MW solar farm, resulting in over $350 million of investment and 500 new regional jobs.

    •    $15.8 million for smart software system, solar and battery storage microgrid initiatives across the state, and

    •    $25 million to deploy grid-scale battery storage facilities in the west of Victoria by Summer 2018.

https://www.energy.vic.gov.au/renewable-energy/victorias-renewable-energy-action-plan?_ga=2.119238347.330554785.1512442660-1629377489.1512442660